La sucesión de Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144....

 

Estatua de Fibonacci

A finales del siglo XII, la república de Pisa es una gran potencia comercial, con delegaciones en todo el norte de Africa. En una de estas delegaciones, en la ciudad argelina de Bugía, uno de los hijos de Bonaccio, el responsable de la oficina de aduanas en la ciudad, Leonardo, es educado por un tutor árabe en los secretos del cálculo posicional hindú y tiene su primer contacto con lo que acabaría convirtiéndose, gracias a él, en uno de los más magníficos regalos del mundo árabe a la cultura occidental: nuestro actual sistema de numeración posicional.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., para entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor.

De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera summa matemática de la Edad Media.

En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

Pero Fibonacci es más conocido entre los matemáticos por una curiosa sucesión de números:

1; 1; 2; 3, 5; 8; 13; 21; 34; 55; 89....

que colocó en el margen de su Liber abaci junto al conocido "problema de los conejos" que más que un problema parece un acertijo de matemáticas recreativas. El problema en lenguaje actual diría:

"Una pareja de conejos tarda un mes en alcanzar la edad fértil, a partir de ese momento cada vez engendra una pareja de conejos, que a su vez, tras ser fértiles engendrarán cada mes una pareja de conejos. ¿Cuántos conejos habrá al cabo de un determinado número de meses?."

En este gráfico vemos que el número de parejas a lo largo de los meses coincide con los términos de la sucesión.

Veamos con detalle estos números. 1; 1; 2; 3, 5; 8; 13; 21; 34; 55; 89, 144....

Es fácil ver que cada término es la suma de los dos anteriores. Pero existe entre ellos otra relación curiosa, el cociente entre cada término y el anterior se va acercando cada vez más a un número muy especial, ya conocido por los griegos y aplicado en sus esculturas y sus templos: el número áureo. =1.618039....

margaritaPero los números de la sucesión de Fibonacci van a sorprender a todos los biólogos.

Como muy bien nos enseña la filotaxia, las ramas y las hojas de las plantas se distribuyen buscando siempre recibir el máximo de luz para cada una de ellas. Por eso ninguna hoja nace justo en la vertical de la anterior. La distribución de las hojas alrededor del tallo de las plantas se produce siguiendo secuencias basadas exclusivamente en estos números.

El número de espirales en numerosas flores y frutos también se ajusta a parejas consecutivas de términos de esta sucesión: los girasoles tienen 55 espirales en un sentido y 89 en el otro, o bien 89 y 144.

Las margaritas presentan las semillas en forma de 21 y 34 espirales.

Y cualquier variedad de piña presenta siempre un número de espirales que coincide con dos términos de la sucesión de los conejos de Fibonacci, 8 y 13; o 5 y 8.

Parece que el mundo vegetal tenga programado en sus códigos genéticos del crecimiento los términos de la sucesión de Fibonacci.

Rectángulos de Fibonacci y espiral de Durero

Rectángulos de Fibonacci

Podemos construir una serie de rectángulos utilizando los números de esta sucesión.

Empezamos con un cuadrado de lado 1, los dos primeros términos de la sucesión.

Construimos otro igual sobre él. Tenemos ya un primer rectángulo Fibonacci de dimensiones 2 x1.

Sobre el lado de dos unidades construimos un cuadrado y tenemos un nuevo rectángulo de 3x2.

Ssobre el lado mayor construimos otro cuadrado, tenemos ahora un rectángulo 5x3, luego uno 5x8, 8x13, 13x21...

Podemos llegar a rectángulo de 34x55, de 55x89...

Cuanto más avancemos en este proceso más nos aproximamos al rectángulo aureo.

Hemos construido así una sucesión de rectángulos, cuyas dimensiones partiendo del cuadrado (1x1), pasan al rectángulo de dimensiones 2x1, al de 3x2, y avanzan de forma inexorable hacia el rectángulo áureo.

Si unimos los vértices de estos rectángulos se nos va formando una curva que ya nos resulta familiar. Es la espiral de Durero. La espiral de nuestro logotipo.

Una espiral, que de forma bastante ajustada, está presente en el crecimiento de las conchas de los moluscos, en los cuernos de los rumiantes... Es decir, la espiral del crecimeinto y la forma del reino animal.

Fibonacci sin pretenderlo había hallado la llave del crecimiento en la Naturaleza.